134 research outputs found

    Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks

    Get PDF
    Landslides are significant natural hazards in Turkey, second only to earthquakes with respect to economic losses and casualties. The West Black Sea region of Turkey is known as one of the most landslide-prone regions in the country. The work presented in this paper is aimed at evaluating landslide susceptibility in a selected area in the West Black Sea region using Artificial Neural Network (ANN) method. A total of 317 landslides were identified and mapped in the area by extensive field work and by use of air photo interpretations to build a landslide inventory map. A landslide database was then derived automatically from the landslide inventory map. To evaluate landslide susceptibility, six input parameters (slope angle, slope aspect, topographical elevation, topographical shape, wetness index, and vegetation index) were used. To obtain maps of these parameters, Digital Elevation Model (DEM) and ASTER satellite imagery of the study area were used. At the first stage, all data were normalized in [0, 1] interval, and parameter effects on landslide occurrence were expressed using Statistical Index values (Wi). Then, landslide susceptibility analyses were performed using an ANN. Finally, performance of the resulting map and the applied methodology is discussed relative to performance indicators, such as predicted areal extent of landslides and the strength of relation (<i>r<sub>ij</sub></i>) value. Much of the areal extents of the landslides (87.2%) were classified as susceptible to landsliding, and <i>r<sub>ij</sub></i> value of 0.85 showed a high degree of similarity. In addition to these, at the final stage, an independent validation strategy was followed by dividing the landslide data set into two parts and 82.5% of the validation data set was found to be correctly classified as landslide susceptible areas. According to these results, it is concluded that the map produced by the ANN is reliable and methodology applied in the study produced high performance, and satisfactory results

    Proceedings of the 1st WSEAS International Conference on "Environmental and Geological Science and Engineering (EG'08)"

    Get PDF
    This book contains the proceedings of the 1st WSEAS International Conference on Environmental and Geological Science and Engineering (EG'08) which was held in Malta, September 11-13, 2008. This conference aims to disseminate the latest research and applications in Renewable Energy, Mineral Resources, Natural Hazards and Risks, Environmental Impact Assessment, Urban and Regional Planning Issues, Remote Sensing and GIS, and other relevant topics and applications. The friendliness and openness of the WSEAS conferences, adds to their ability to grow by constantly attracting young researchers. The WSEAS Conferences attract a large number of well-established and leading researchers in various areas of Science and Engineering as you can see from http://www.wseas.org/reports. Your feedback encourages the society to go ahead as you can see in http://www.worldses.org/feedback.htm The contents of this Book are also published in the CD-ROM Proceedings of the Conference. Both will be sent to the WSEAS collaborating indices after the conference: www.worldses.org/indexes In addition, papers of this book are permanently available to all the scientific community via the WSEAS E-Library. Expanded and enhanced versions of papers published in this conference proceedings are also going to be considered for possible publication in one of the WSEAS journals that participate in the major International Scientific Indices (Elsevier, Scopus, EI, ACM, Compendex, INSPEC, CSA .... see: www.worldses.org/indexes) these papers must be of high-quality (break-through work) and a new round of a very strict review will follow. (No additional fee will be required for the publication of the extended version in a journal). WSEAS has also collaboration with several other international publishers and all these excellent papers of this volume could be further improved, could be extended and could be enhanced for possible additional evaluation in one of the editions of these international publishers. Finally, we cordially thank all the people of WSEAS for their efforts to maintain the high scientific level of conferences, proceedings and journals

    Landslide susceptibility mapping at VAZ watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms

    Get PDF
    Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning

    Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya

    Get PDF
    The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning

    Landslide susceptibility mapping using support vector machine and GIS at the Golestan province, Iran

    Get PDF
    The main goal of this study is to produce landslide susceptibility map using GIS-based support vector machine (SVM) at Kalaleh Township area of the Golestan province, Iran. In this paper, six different types of kernel classifiers such as linear, polynomial degree of 2, polynomial degree of 3, polynomial degree of 4, radial basis function (RBF) and sigmoid were used for landslide susceptibility mapping. At the first stage of the study, landslide locations were identified by aerial photographs and field surveys, and a total of 82 landslide locations were extracted from various sources. Of this, 75% of the landslides (61 landslide locations) are used as training dataset and the rest was used as (21 landslide locations) the validation dataset. Fourteen input data layers were employed as landslide conditioning factors in the landslide susceptibility modelling. These factors are slope degree, slope aspect, altitude, plan curvature, profile curvature, tangential curvature, surface area ratio (SAR), lithology, land use, distance from faults, distance from rivers, distance from roads, topographic wetness index (TWI) and stream power index (SPI). Using these conditioning factors, landslide susceptibility indices were calculated using support vector machine by employing six types of kernel function classifiers. Subsequently, the results were plotted in ArcGIS and six landslide susceptibility maps were produced. Then, using the success rate and the prediction rate methods, the validation process was performed by comparing the existing landslide data with the six landslide susceptibility maps. The validation results showed that success rates for six types of kernel models varied from 79% to 87%. Similarly, results of prediction rates showed that RBF (85%) and polynomial degree of 3 (83%) models performed slightly better than other types of kernel (polynomial degree of 2 = 78%, sigmoid = 78%, polynomial degree of 4 = 78%, and linear = 77%) models. Based on our results, the differences in the rates (success and prediction) of the six models are not really significant. So, the produced susceptibility maps will be useful for general land-use planning
    corecore